Math 206A Lecture 9 Notes

Daniel Raban

October 17, 2018

1 Borsuk's Conjecture: The Final Chapter

1.1 Remaining lemmas

Let's finish the proof of the Kahn-Kalai theorem. Our main lemma is the following.

Lemma 1.1. Let $M = \{(x_1, \ldots, x_n) \subseteq \{\pm 1\}^n : x_1 = 1, x_2 \cdots x_n = 1\}$, and let $A \subseteq M$ be such that $a \cdot a' \neq 0$ for all $a, a' \in A$. Then $|A| < c^n$ for some c < 2.

Proof. Last time we had $G(t) = (t-1)(t-2)\cdots(t-p+1)$ with $t \in \mathbb{N}$. For $\overline{a} \in A$, $\overline{z} = (1, z_2, \ldots, z_n)$, think of $G(\overline{a} \cdot \overline{z})$ as a polynomial in the z_i of degree p-1 < n/4. Let F_a be the square-free part of $G(\overline{a} \cdot \overline{z})$. For example, if $\overline{a} = (1, 1, -1, -1, 1)$, n = 5 and p = 3, then

$$F(\overline{z} \cdot \overline{z}) = (1 + z_2 - z_3 - z_4 + z_5 - 1)(1 + z_2 - z_3 - z_4 + z_5 - 2)$$

= 1 + z_2^2 + z_3^2 - z_2 z_3 + z_4^2 - z_2 z_4 + z_3 z_4 + \cdots

Then $F_a = 1 - z_2 z_4 - z_2 z_4 + z_3 z_4 + \cdots$.

Lemma 1.2 (independence lemma). The set $\{F_a : a \in A\}$ are linearly independent.

Proof. Note that $t \neq 0 \pmod{p} \iff G(t) = 0 \mod{p}$. Proceed by contradiction, assuming $\lambda_1 F_{\overline{a}_1} + \lambda_2 F_{\overline{a}_2} + \cdots = 0$ with $\lambda_1 \neq 0 \pmod{p}$. Then $G(\overline{a}_1 \cdot \overline{a}_1) = G(n) = G(4p) \neq 0 \pmod{p}$. So $F_{\overline{a}_1} \neq 0 \pmod{p}$. Also note that $G(a \cdot a') = F_a(a')$ for all $a, a' \in M$. We also have that $F_{\overline{a}}(\overline{a'}) = 0 \pmod{p}$ for $a' \neq a$. Together, these two imply the independence lemma. Indeed, substitute $z = \overline{a}_1$ into the linear combination to get $\lambda_1 F_{\overline{a}_1}(\overline{a}_1) + 0 + \cdots + 0 = 0 \pmod{p}$. Since $F_{\overline{a}_1}(\overline{a}_1) \neq 0 \pmod{p}$, $\lambda_1 = 0 \pmod{p}$. We claim that $a \cdot a' = 0 \pmod{q}$. Do this as an exercise. This means that $a \cdot a' = 0 \pmod{q}$ $(\mod 4) \implies F_{\overline{a}_1}(\overline{a}_1) = 0 \pmod{p}$. Combining these results proves the lemma.

We return to the main lemma.

Proof. So $|A| < \binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n/4} < (n/4+1)\binom{n}{n/4} < c^n$. This implies the main lemma.

So we can finish the proof of the theorem:

Proof. The lemma implies that M cannot be partitioned into fewer than $2^{n-2}/c^n \gg (n^2+1)$ parts with no $a \cdot a' = 0$. This implies that, for large enough $n, M \otimes M$ cannot be partitioned into fewer than $(n^2 + 1)$ parts of smaller diameter. The $n^2 + 1$ comes from the fact that $\dim(M \otimes M) = n^2$.

1.2 Aftermath

Professor Pak believes that Borsuk's conjucture probably fails for n = 4 or n = 5. There is no reason why we need the large construction in the Kahn-Kalai proof. It is known (from 2016) that Borsuk's conjecture fails in dimension 64.

One can ask about the chromatic number $\chi_1(\mathbb{R}^d)$ of the unit distance graph. It is known that $5 \leq \chi_1(\mathbb{R}^2) \leq 7$. How does this behave asymptotically?

Theorem 1.1 (Franklin-Wilson). $c^d \leq \chi_1(\mathbb{R}^d) \leq d^d$ for some constant c.